Top Highlighted Recommendation System Ideas from Alibaba

Tech First
8 min readOct 11, 2020

--

The recommendation system of Alibaba is serving billions of users all over the world, we selected some top great ideas according to their public papers. Accordingly, they applied the similar architecture as the Google/Amazon did, but the internal ideas are different. Let’s check it!

1. Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba

> https://arxiv.org/abs/1803.02349

  • Recommender systems (RSs) have been the most important technology for increasing the business in Taobao, the largest online consumer-to-consumer (C2C) platform in China. There are three major challenges facing RS in Taobao: scalability, sparsity and cold start. In this paper, we present our technical solutions to address these three challenges. The methods are based on a well-known graph embedding framework. We first construct an item graph from users’ behavior history, and learn the embeddings of all items in the graph. The item embeddings are employed to compute pairwise similarities between all items, which are then used in the recommendation process. To alleviate the sparsity and cold start problems, side information is incorporated into the graph embedding framework. We propose two aggregation methods to integrate the embeddings of items and the corresponding side information. Experimental results from offline experiments show that methods incorporating side information are superior to those that do not. Further, we describe the platform upon which the embedding methods are deployed and the workflow to process the billion-scale data in Taobao. Using A/B test, we show that the online Click-Through-Rates (CTRs) are improved comparing to the previous collaborative filtering based methods widely used in Taobao, further demonstrating the effectiveness and feasibility of our proposed methods in Taobao’s live production environment.

2. Learning and Transferring IDs Representation in E-commerce

> https://arxiv.org/abs/1712.08289

  • Many machine intelligence techniques are developed in E-commerce and one of the most essential components is the representation of IDs, including user ID, item ID, product ID, store ID, brand ID, category ID etc. The classical encoding based methods (like one-hot encoding) are inefficient in that it suffers sparsity problems due to its high dimension, and it cannot reflect the relationships among IDs, either homogeneous or heterogeneous ones. In this paper, we propose an embedding based framework to learn and transfer the representation of IDs. As the implicit feedbacks of users, a tremendous amount of item ID sequences can be easily collected from the interactive sessions. By jointly using these informative sequences and the structural connections among IDs, all types of IDs can be embedded into one low-dimensional semantic space. Subsequently, the learned representations are utilized and transferred in four scenarios: (i) measuring the similarity between items, (ii) transferring from seen items to unseen items, (iii) transferring across different domains, (iv) transferring across different tasks. We deploy and evaluate the proposed approach in Hema App and the results validate its effectiveness.

3. TDM:Learning Tree-based Deep Model for Recommender Systems

> https://arxiv.org/abs/1801.02294

  • Model-based methods for recommender systems have been studied extensively in recent years. In systems with large corpus, however, the calculation cost for the learnt model to predict all user-item preferences is tremendous, which makes full corpus retrieval extremely difficult. To overcome the calculation barriers, models such as matrix factorization resort to inner product form (i.e., model user-item preference as the inner product of user, item latent factors) and indexes to facilitate efficient approximate k-nearest neighbor searches. However, it still remains challenging to incorporate more expressive interaction forms between user and item features, e.g., interactions through deep neural networks, because of the calculation cost.
    In this paper, we focus on the problem of introducing arbitrary advanced models to recommender systems with large corpus. We propose a novel tree-based method which can provide logarithmic complexity w.r.t. corpus size even with more expressive models such as deep neural networks. Our main idea is to predict user interests from coarse to fine by traversing tree nodes in a top-down fashion and making decisions for each user-node pair. We also show that the tree structure can be jointly learnt towards better compatibility with users’ interest distribution and hence facilitate both training and prediction. Experimental evaluations with two large-scale real-world datasets show that the proposed method significantly outperforms traditional methods. Online A/B test results in Taobao display advertising platform also demonstrate the effectiveness of the proposed method in production environments.

4. Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction

> https://arxiv.org/abs/1704.05194

  • CTR prediction in real-world business is a difficult machine learning problem with large scale nonlinear sparse data. In this paper, we introduce an industrial strength solution with model named Large Scale Piece-wise Linear Model (LS-PLM). We formulate the learning problem with L1 and L2,1 regularizers, leading to a non-convex and non-smooth optimization problem. Then, we propose a novel algorithm to solve it efficiently, based on directional derivatives and quasi-Newton method. In addition, we design a distributed system which can run on hundreds of machines parallel and provides us with the industrial scalability. LS-PLM model can capture nonlinear patterns from massive sparse data, saving us from heavy feature engineering jobs. Since 2012, LS-PLM has become the main CTR prediction model in Alibaba’s online display advertising system, serving hundreds of millions users every day.

5. Deep Interest Network for Click-Through Rate Prediction

> https://arxiv.org/abs/1706.06978

  • Click-through rate prediction is an essential task in industrial applications, such as online advertising. Recently deep learning based models have been proposed, which follow a similar Embedding\&MLP paradigm. In these methods large scale sparse input features are first mapped into low dimensional embedding vectors, and then transformed into fixed-length vectors in a group-wise manner, finally concatenated together to fed into a multilayer perceptron (MLP) to learn the nonlinear relations among features. In this way, user features are compressed into a fixed-length representation vector, in regardless of what candidate ads are. The use of fixed-length vector will be a bottleneck, which brings difficulty for Embedding\&MLP methods to capture user’s diverse interests effectively from rich historical behaviors. In this paper, we propose a novel model: Deep Interest Network (DIN) which tackles this challenge by designing a local activation unit to adaptively learn the representation of user interests from historical behaviors with respect to a certain ad. This representation vector varies over different ads, improving the expressive ability of model greatly. Besides, we develop two techniques: mini-batch aware regularization and data adaptive activation function which can help training industrial deep networks with hundreds of millions of parameters. Experiments on two public datasets as well as an Alibaba real production dataset with over 2 billion samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with state-of-the-art methods. DIN now has been successfully deployed in the online display advertising system in Alibaba, serving the main traffic.

6. Deep Interest Evolution Network for Click-Through Rate Prediction

> https://arxiv.org/abs/1809.03672

  • Click-through rate~(CTR) prediction, whose goal is to estimate the probability of the user clicks, has become one of the core tasks in advertising systems. For CTR prediction model, it is necessary to capture the latent user interest behind the user behavior data. Besides, considering the changing of the external environment and the internal cognition, user interest evolves over time dynamically. There are several CTR prediction methods for interest modeling, while most of them regard the representation of behavior as the interest directly, and lack specially modeling for latent interest behind the concrete behavior. Moreover, few work consider the changing trend of interest. In this paper, we propose a novel model, named Deep Interest Evolution Network~(DIEN), for CTR prediction. Specifically, we design interest extractor layer to capture temporal interests from history behavior sequence. At this layer, we introduce an auxiliary loss to supervise interest extracting at each step. As user interests are diverse, especially in the e-commerce system, we propose interest evolving layer to capture interest evolving process that is relative to the target item. At interest evolving layer, attention mechanism is embedded into the sequential structure novelly, and the effects of relative interests are strengthened during interest evolution. In the experiments on both public and industrial datasets, DIEN significantly outperforms the state-of-the-art solutions. Notably, DIEN has been deployed in the display advertisement system of Taobao, and obtained 20.7% improvement on CTR.

7. Deep Session Interest Network for Click-Through Rate Prediction

> https://arxiv.org/abs/1905.06482

  • Click-Through Rate (CTR) prediction plays an important role in many industrial applications, such as online advertising and recommender systems. How to capture users’ dynamic and evolving interests from their behavior sequences remains a continuous research topic in the CTR prediction. However, most existing studies overlook the intrinsic structure of the sequences: the sequences are composed of sessions, where sessions are user behaviors separated by their occurring time. We observe that user behaviors are highly homogeneous in each session, and heterogeneous cross sessions. Based on this observation, we propose a novel CTR model named Deep Session Interest Network (DSIN) that leverages users’ multiple historical sessions in their behavior sequences. We first use self-attention mechanism with bias encoding to extract users’ interests in each session. Then we apply Bi-LSTM to model how users’ interests evolve and interact among sessions. Finally, we employ the local activation unit to adaptively learn the influences of various session interests on the target item. Experiments are conducted on both advertising and production recommender datasets and DSIN outperforms other state-of-the-art models on both datasets.

8. Behavior Sequence Transformer for E-commerce Recommendation in Alibaba

> https://arxiv.org/abs/1905.06874

  • Deep learning based methods have been widely used in industrial recommendation systems (RSs). Previous works adopt an Embedding&MLP paradigm: raw features are embedded into low-dimensional vectors, which are then fed on to MLP for final recommendations. However, most of these works just concatenate different features, ignoring the sequential nature of users’ behaviors. In this paper, we propose to use the powerful Transformer model to capture the sequential signals underlying users’ behavior sequences for recommendation in Alibaba. Experimental results demonstrate the superiority of the proposed model, which is then deployed online at Taobao and obtain significant improvements in online Click-Through-Rate (CTR) comparing to two baselines.

9. Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate

> https://arxiv.org/abs/1804.07931

  • Estimating post-click conversion rate (CVR) accurately is crucial for ranking systems in industrial applications such as recommendation and advertising. Conventional CVR modeling applies popular deep learning methods and achieves state-of-the-art performance. However it encounters several task-specific problems in practice, making CVR modeling challenging. For example, conventional CVR models are trained with samples of clicked impressions while utilized to make inference on the entire space with samples of all impressions. This causes a sample selection bias problem. Besides, there exists an extreme data sparsity problem, making the model fitting rather difficult. In this paper, we model CVR in a brand-new perspective by making good use of sequential pattern of user actions, i.e., impression -> click -> conversion. The proposed Entire Space Multi-task Model (ESMM) can eliminate the two problems simultaneously by i) modeling CVR directly over the entire space, ii) employing a feature representation transfer learning strategy. Experiments on dataset gathered from Taobao’s recommender system demonstrate that ESMM significantly outperforms competitive methods. We also release a sampling version of this dataset to enable future research. To the best of our knowledge, this is the first public dataset which contains samples with sequential dependence of click and conversion labels for CVR modeling.

--

--